
IDS521 Project A (Individual Assignment)
Create a sample case how to use data warehousing with MS SQL Server’s SSIS (Integration Services), SSAS (Analysis Services), and SSRS
(Reporting Services).

A new database file should include:

Data analytic purpose data and tables
Queries for data analytic or SSAS/SSRS results (not limited to but this database should not be transactional data)

Data analytic purpose data and tables

Scenario:

Let's consider a scenario where a university wants to enhance its registration system to analyze student enrollment, instructor performance, and course
popularity. They have transactional data stored in their operational database but want to create a data warehousing solution for analytical purposes.

Solution:

We'll create a data warehousing solution with MS SQL Server's SSIS (Integration Services), SSAS (Analysis Services), and SSRS (Reporting Services)
for the university's registration system.

Data Warehouse Design:We'll design the following tables for analytical purposes:
Student: Contains information about students enrolled in courses.
Instructor: Stores details about instructors teaching courses.
Course: Holds information about courses offered by the university.
Section: Represents sections of courses offered in different semesters.
Student_Takes: Records the enrollment of students in various course sections.
SSIS (Integration Services):
Use SSIS to extract data from the university's operational database and load it into the data warehouse.
Design SSIS packages to perform ETL operations, extracting data from tables like Student, Instructor, Course, Section, and Student_Takes.
Transform the data as needed, such as aggregating student enrollment numbers by course or semester.
Load the transformed data into the data warehouse tables designed for analytics.
SSAS (Analysis Services):
Utilize SSAS to create a multidimensional model or tabular model based on the data warehouse.
Design dimensions representing attributes like student demographics, course details, instructor information, and time (semester).
Define measures such as student enrollment count, average course rating, and instructor evaluation scores.
Create hierarchies to organize data, such as course categories and student demographics.
Process the SSAS model to populate it with data from the data warehouse.
SSRS (Reporting Services):
Leverage SSRS to create reports and visualizations based on the SSAS model or directly from the data warehouse.
Design reports to analyze student enrollment trends, instructor performance evaluations, course popularity, and student demographics.
Create interactive dashboards to monitor key metrics such as enrollment numbers, course completion rates, and instructor satisfaction scores.
Schedule report delivery to university administrators, faculty, and staff for decision-making purposes.
Implement drill-down and drill-through functionalities for users to explore data in detail, such as viewing enrollment trends by department or analyzing
student performance by course.
Sample Queries for Analytical Insights:

Query to calculate the enrollment count by course and semester.
Query to identify courses with the highest enrollment numbers.
Query to analyze student demographics by department and course level.
Query to evaluate instructor performance based on student feedback and course completion rates.
Query to compare course popularity over multiple semesters.
By implementing this data warehousing solution with SSIS, SSAS, and SSRS, the university can gain valuable insights into student enrollment patterns,
instructor effectiveness, and course performance, enabling them to make data-driven decisions to improve the quality of education and student
experience

create tables script

/*

Professor. Michael Choi
Student. Vinay Joneja
IDS 521. Advanced Databases.

project. tool. Microsoft SQL Server Management Studio and Access DB
script. Language SQL - Created using Microsoft SQL Management Studio
create database

Summary. DATABASE. SQL Server
A. create student
B. create instructor
C. create course
D. create section
E. create takes
F. create department

*/

CREATE DATABASE IDS521

USE [ids521]
GO

/****** Table [dbo].[course] ******/

CREATE TABLE [dbo].[course](
[course_id] [varchar](8) NOT NULL,
[title] [varchar](50) NULL,
[dept_name] [varchar](20) NULL,
[credits] [numeric](2, 0) NULL,
[titles] [varchar](255) NULL,
PRIMARY KEY CLUSTERED
(
[course_id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SEQUENTIAL_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
GO

/****** Table [dbo].[department] ******/
CREATE TABLE [dbo].[department](
[deptid] [int] NOT NULL,
[dept_name] [varchar](250) NULL,
[budget] [decimal](10, 2) NULL,
[instructor_id] [int] NULL,
PRIMARY KEY CLUSTERED
(
[deptid] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SEQUENTIAL_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

GO
/****** Table [dbo].[instructor] ******/

CREATE TABLE [dbo].[instructor](
[id] [char](5) NULL,
[name_] [varchar](20) NULL,
[dept_name] [varchar](20) NULL,
[salary] [numeric](8, 2) NULL,
[names] [varchar](255) NULL
) ON [PRIMARY]

/****** Table [dbo].[section] ******/
CREATE TABLE [dbo].[section](
[section_name] [varchar](255) NULL,
[building] [varchar](255) NULL,
[class] [varchar](255) NULL,
[instructor_id] [varchar](10) NULL,
[sec_id] [varchar](10) NOT NULL,
[course_id] [varchar](10) NULL,
PRIMARY KEY CLUSTERED
(
[sec_id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SEQUENTIAL_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
GO

/****** Table [dbo].[student] ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[student](
[ID] [varchar](5) NOT NULL,
[name] [varchar](20) NOT NULL,
[dept_name] [varchar](20) NULL,
[tot_cred] [numeric](3, 0) NULL,
PRIMARY KEY CLUSTERED
(
[ID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SEQUENTIAL_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
GO

/****** Table [dbo].[takes] ******/

CREATE TABLE [dbo].[takes](
[ID] [varchar](5) NOT NULL,
[course_id] [varchar](8) NULL,
[sec_id] [varchar](8) NULL,
[semester] [varchar](6) NULL,

[year] [numeric](4, 0) NULL,
[grade] [varchar](2) NULL,
[S_ID] [varchar](10) NULL,
PRIMARY KEY CLUSTERED
(
[ID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SEQUENTIAL_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
GO

results. sql script. sql package. sql server integration package. sql server reporting package.

/******************
Professor. Michael Choi
Student. Vinay Joneja
IDS 521. Advanced Databases.
project.
Tool. Microsoft SQL Server Management Studio and Access DB
Script. Language SQL - Created using Microsoft SQL Management Studio
ETL SCRIPT. for creating datawarehouse
Extract transfer load
Summary. Datawarehouse. SQL Server Integration Package
A. Student taking course
B. Students taking credits
C. Instructor teach classes
D. Instructor teach credits
E. Students taking course.
F. Instructor teaches course

Summary. Reporting. SQL Server Reporting Services
A. Student taking course
B. Students taking credits
C. Instructor teach classes
D. Instructor teach credits
E. Students taking course.
F. Instructor teaches course

*/

results. sql script. sql package. sql server integration package. sql server reporting package.

-- CREATE DATABASE FOR DATAWAHRE HOUSE
CREATE DATABASE IDS521DataWarehouse;

/* LINKED SERVER USING THE IDS 410. MICROSOFT ACCESS DATABASE. */

USE [master]
GO
EXEC master.dbo.sp_addlinkedserver
@server = N'IDS521',
@srvproduct=N'',
@provider=N'MSDASQL',
@datasrc=N'IDS521',
@provstr=N'MSDASQL'

GO

/* DATA IMPORT. ACCESS 410 TO SQL SERVER 521 */
USE ids521
INSERT INTO Student(s.[ID], s.[name])
select *
from openquery
(IDS521,
'Select StudentID, StudentFirstName + '' '' + StudentLastName as Name from student_t where studentid NOT IN (1,2,3)'
)

/* QUERY. */
USE ids521
SELECT * FROM STUDENT
SELECT * FROM COURSE
SELECT * FROM INSTRUCTOR
SELECT * FROM SECTION
SELECT * FROM TAKES
SELECT * FROM DEPARTMENT

-- DATA GENERATION. TABLE. TAKES
USE ids521
-- Variables for generating random data
DECLARE @Counter INT = 1;

-- Loop to insert 100 rows with random data
WHILE @Counter <= 100
BEGIN
INSERT INTO [dbo].[takes] ([ID], [course_id], [sec_id], [semester], [year], [grade])
VALUES (
CONCAT('ID', REPLICATE('0', 3 - LEN(@Counter)) + CAST(@Counter AS VARCHAR(3))),
CONCAT('C', RIGHT('0' + CAST(ABS(CHECKSUM(NEWID())) % 1000 AS VARCHAR(4)), 4)),
CONCAT('SEC', RIGHT('0' + CAST(ABS(CHECKSUM(NEWID())) % 1000 AS VARCHAR(4)), 4)),
CASE ABS(CHECKSUM(NEWID())) % 2 WHEN 0 THEN 'Fall' ELSE 'Spring' END,
2020 + ABS(CHECKSUM(NEWID())) % 5,
CASE ABS(CHECKSUM(NEWID())) % 5 WHEN 0 THEN 'A' WHEN 1 THEN 'B' WHEN 2 THEN 'C' WHEN 3 THEN 'D' ELSE 'F' END
);

SET @Counter = @Counter + 1;
END;

-- DATA. GENERATION. TABLE. SECTION

USE ids521
-- Variables for generating random data
DECLARE @CounterA INT = 1;

-- Loop to insert 100 rows with random data
WHILE @CounterA <= 100
BEGIN
INSERT INTO [dbo].[section] ([sec_id], [section_name], [instructor_id], [building], [class])
VALUES (
CONCAT('SEC', RIGHT('0' + CAST(@CounterA AS VARCHAR(7)), 7)),

'Section' + CAST(@CounterA AS VARCHAR(3)),
CONCAT('INST', RIGHT('0' + CAST(ABS(CHECKSUM(NEWID())) % 20 + 1 AS VARCHAR(2)), 10)),
'Building' + CAST(ABS(CHECKSUM(NEWID())) % 10 + 1 AS VARCHAR(2)),
'Class' + CAST(ABS(CHECKSUM(NEWID())) % 10 + 1 AS VARCHAR(2))
);

SET @CounterA = @CounterA + 1;
END;

-- DATA. GENERATION. TAKES

CREATE TABLE #RandomNumbers (
RandomNumber INT
);

DECLARE @Counter INT = 1;
DECLARE @RandomNumber INT;

WHILE @Counter <= 100
BEGIN
-- Generate a random number between 1 and 100
SET @RandomNumber = ABS(CAST(RAND() * 1000 AS INT)) % 100 + 1;

-- Check if the number already exists in the temporary table
IF NOT EXISTS (SELECT 1 FROM #RandomNumbers WHERE RandomNumber = @RandomNumber)
BEGIN
-- Insert the unique number into the temporary table
INSERT INTO #RandomNumbers (RandomNumber) VALUES (@RandomNumber);
SET @Counter = @Counter + 1;
END
END

UPDATE takes
SET S_ID = RandomNumber
FROM #RandomNumbers
WHERE [dbo].[takes].id = CONCAT('ID', RIGHT('0' + CAST(RandomNumber AS VARCHAR(3)), 7));

-- Select the distinct random numbers from the temporary table
SELECT RandomNumber
FROM #RandomNumbers;

-- DATAWAREHOUSE. CREATE TABLE. INSTRUCTOR SECTION.

USE IDS521DataWarehouse
-- Create a new table to store the results
CREATE TABLE [dbo].[instructor_section](
-- details from instructor table
[id] [char](5) NOT NULL,
[name_] [varchar](20) NULL,
[dept_name] [varchar](20) NULL,
[salary] [numeric](8, 2) NULL,
[names] [varchar](255) NULL,

-- details from section table

[section_name] [varchar](255) NULL,

[building] [varchar](255) NULL,
[class] [varchar](255) NULL,
[instructor_id] [varchar](10) NULL,
[sec_id] [varchar](10) NOT NULL,
[sec_course_id] [varchar](8) NOT NULL,

-- details from course table
[course_id] [varchar](8) NOT NULL,
[title] [varchar](50) NULL,
[c_dept_name] [varchar](20) NULL,
[credits] [numeric](2, 0) NULL,
[titles] [varchar](255) NULL

PRIMARY KEY CLUSTERED
(
[ID] ASC,
[sec_id] ASC
)
) ON [PRIMARY];
GO

-- DATAWAREHOUSE TABLE. INSTRUCTOR SECTION.
-- DATAWAREHOUSE TABLE. INSTRUCTOR SECTION.
-- DATA SQL SERVER INTEGRATION PACKAGE.
-- DATA ETL IDS21 TO IDS521DATAWAREHOUSE DATABASE

USE IDS521DataWarehouse
--Drop table [dbo].[instructor_section]

USE IDS521DataWarehouse
-- ETL Script
INSERT INTO [dbo].[instructor_section]
(
[id], [name_], [dept_name] , [salary], [names],
[section_name], [building], [class], [instructor_id], [sec_id], [sec_course_id],
[course_id], [title], [c_dept_name], [credits], [titles])
SELECT
i.[id],i.[name_], i.[dept_name] , i.[salary], i.[names],
sec.[section_name], sec.[building], sec.[class], sec.[instructor_id], sec.[sec_id], sec.[course_id],
c.[course_id], c.[title], c.[dept_name], c.[credits], c.[titles]
FROM
[ids521].[dbo].[instructor] i
JOIN
[ids521].[dbo].[section] sec ON sec.[instructor_id] = i.[ID]
JOIN
[ids521].[dbo].[course] c ON c.[course_id] = sec.[course_id];

-- QUERY. INSTRUCTOR TEACH SECTIONS.

SELECT TOP (1000) [id], [names], [dept_name], [salary], [section_name],
[building], [class], [instructor_id],[sec_id], [sec_course_id],
[course_id], [title], [c_dept_name] , [credits], [titles]
FROM [IDS521DataWarehouse].[dbo].[instructor_section]
ORDER BY ID asc;

-- REPORTING. INSTRUCTOR TEACH CREDITS

SELECT TOP (1000) [id], [names], SUM([credits]) AS sumcredits
FROM [IDS521DataWarehouse].[dbo].[instructor_section]
GROUP BY [id], [names]

ORDER BY ID asc;

-- REPORTING. INSTRUCTOR IN DEPARTMENTS.

SELECT TOP (1000) [dept_name], COUNT([ID]) AS countinstructors

FROM [IDS521DataWarehouse].[dbo].[instructor_section]

GROUP BY [dept_name]

ORDER BY [dept_name] asc;

-- REPORTING. STUDENTS CREDITS DEPARTMENTS.

SELECT TOP (1000) [id] , [name], SUM([tot_cred]) AS sumcredits

FROM [IDS521DataWarehouse].[dbo].[student_section]

GROUP BY [id], [name]

ORDER BY [id] asc;

-- REPORTING. STUDENTS. DEPARTMENTS.

SELECT TOP (1000) [dept_name], COUNT([ID]) AS countstudents

FROM [IDS521DataWarehouse].[dbo].[student_section]

GROUP BY [dept_name]

ORDER BY [dept_name] asc;

-- REPORTING. STUDENTS. CLASS. SECTION.

SELECT TOP (1000) [sec_id], COUNT([ID]) AS countstudents

FROM [IDS521DataWarehouse].[dbo].[student_section]

GROUP BY [sec_id]

ORDER BY [sec_id] asc;

User Document

A user document file (PPT/doc/PDF format only) includes:

1. How to use your analytic database
2. Screenshots of queries or SSAS/SSRS screenshots
3. Describe your sample data
4. How to use SSIS/SSAS/SSRS (brief summary with your computer screenshots)

How to use your analytic database

Using SQL Server Management Studio (SSMS) is essential for database administrators, developers, and analysts working with Microsoft SQL Server
databases. To effectively utilize SSMS, start by launching the application and connecting to your SQL Server instance. Upon connection, you'll have
access to a wide range of tools and functionalities to manage databases, execute queries, and perform administrative tasks.

One of the primary features of SSMS is the Object Explorer, which provides a hierarchical view of the SQL Server instance, including databases,
tables, views, stored procedures, and more. You can use Object Explorer to navigate through your database schema, view properties of database
objects, and perform various management tasks such as creating, modifying, or deleting objects.

SSMS also includes a powerful query editor that allows you to write and execute Transact-SQL (T-SQL) queries against your databases. The query
editor provides syntax highlighting, IntelliSense, and debugging capabilities, making it easier to write and debug complex SQL queries.

In addition to querying databases, SSMS offers tools for database administration tasks such as creating and managing database backups, configuring
security settings, and monitoring database performance. You can also use SSMS to import and export data, generate database diagrams, and perform
database maintenance tasks.

Furthermore, SSMS supports integration with source control systems, allowing you to manage database scripts and version control your database
schema changes.

Overall, mastering SQL Server Management Studio enables you to efficiently manage and administer SQL Server databases, optimize performance,
troubleshoot issues, and ensure the integrity and security of your data. With its comprehensive set of features and user-friendly interface, SSMS is an
indispensable tool for anyone working with SQL Server databases.

Screenshots of queries or SSAS/SSRS screenshots

Describe your sample data

Course Table:
course_id: Unique identifier for the course.
title: Title of the course.
dept_name: Department offering the course.
credits: Number of credits assigned to the course.
titles: Additional title information (potentially redundant with title).
Department Table:
deptid: Unique identifier for the department.
dept_name: Name of the department.
budget: Budget allocated to the department.
instructor_id: ID of the instructor associated with the department.
Instructor Table:
id: Unique identifier for the instructor.
name_: Name of the instructor.
dept_name: Department to which the instructor belongs.
salary: Salary of the instructor.
names: Additional names information.
Section Table:
section_name: Name of the section.
building: Building where the section is held.
class: Class identifier.

instructor_id: ID of the instructor teaching the section.
sec_id: Unique identifier for the section.
course_id: ID of the course associated with the section.
Student Table:
ID: Unique identifier for the student.
name: Name of the student.
dept_name: Department to which the student belongs.
tot_cred: Total credits earned by the student.
Takes Table:
ID: Unique identifier for the enrollment.
course_id: ID of the course taken.
sec_id: ID of the section in which the course is taken.
semester: Semester in which the course is taken.
year: Year in which the course is taken.
grade: Grade received in the course.
S_ID: Student ID associated with the enrollment.
These tables seem to represent a simplified schema for managing courses, departments, instructors, sections, students, and their interactions such as
enrollments and teaching assignments.
ids 521 database and datawharehouse structure

course

student

instructor

section

student takes course section

department

datawarehouse student section

datawarehouse instructor section

How to use SSIS/SSAS/SSRS (brief summary with your computer screenshots)

brief summary of how to use SSIS (SQL Server Integration Services), SSAS (SQL Server Analysis Services), and SSRS (SQL Server Reporting
Services):

SSIS (SQL Server Integration Services):
Open SQL Server Data Tools (SSDT) or SQL Server Management Studio (SSMS) and create a new Integration Services project.
Within the project, create packages to extract, transform, and load (ETL) data from various sources into your SQL Server database.
Use the SSIS Toolbox to drag and drop tasks such as data flow tasks, control flow tasks, and other transformations onto the design surface.
Configure each task by double-clicking on it and setting properties in the editor.
Connect tasks together using precedence constraints to define the flow of data and control logic.
Test and debug your packages locally before deploying them to the SSIS Catalog or SQL Server instance for execution.
Schedule package execution using SQL Server Agent or another scheduling tool.

SSAS (SQL Server Analysis Services):
Launch SQL Server Data Tools (SSDT) or SQL Server Management Studio (SSMS) and create a new Analysis Services project.
Design your multidimensional or tabular model by defining dimensions, measures, hierarchies, and relationships.
Deploy your model to an Analysis Services instance.
Process your model to populate it with data from your data source.
Use SQL Server Management Studio or Excel with Power Pivot to connect to your Analysis Services database and create reports, pivot tables, and
data visualizations.
Monitor and optimize your Analysis Services database for performance and scalability.
SSRS (SQL Server Reporting Services):
Open SQL Server Data Tools (SSDT) or SQL Server Report Builder to create a new Reporting Services project or report.
Design your report layout by adding data regions (tables, matrices, charts, etc.), text boxes, images, and other elements onto the report canvas.
Define data sources and datasets to retrieve data for your report.
Write or generate SQL queries to populate your datasets with the required data.
Customize the appearance and formatting of your report elements using properties and expressions.
Preview your report to ensure it looks as expected.
Deploy your report to a Report Server instance for access by users.
Schedule report execution, manage subscriptions, and monitor report usage and performance.

Goal of this project

Experience and learning of data analytic DB/Data warehouse applications/tools.

Submission Requirements
Submission to Blackboard only (do not compress files into one)
User documentation (PDF, MS Word, or PPT file format only)
Database or data file

Minimum length: 20 pages or slides

No email submission (include attempt to replace an incorrect file submission) in any case.

No late submission is accepted (submission link will be unavailable after Blackboard deadline).

Note

If your computer is not MS Windows so if you cannot use MS SSIS/SSAS/SSRS, ask your TA for permission to use other MacBook compatible data
warehouses tools/applications.

